

Developing CYT-303 NK Cell Engager Combination Therapies for Hepatocellular Carcinoma

Innate Killer Summit, March 30th 2023

Tony Arulanandam, DVM, PhD SVP and Head Preclinical R&D Cytovia Therapeutics

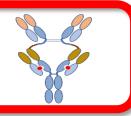
Disclosures and Forward-Looking Statement

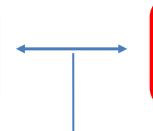
 $\langle Y \rangle$

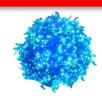
- Employee of Cytovia Therapeutics
- Co-Founder NextPoint Therapeutics

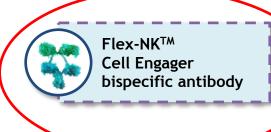
This presentation contains forward-looking statements that are based on the company 's current expectations, assumptions, estimates and projections about the company and the pharmaceutical industry. The company makes no representations about the accuracy of such statements estimates or projections. Forward-looking statements are indicated by words such as: may, will, should, predict, continue, plan, expect, anticipate, estimate, intend, believe, could, goal objectives and similar expressions. Forward-looking statements may include, but are not limited to, statements concerning the company 's anticipated performance, including revenue and profit expectations; development and implementation of collaborations; benefits provided to collaboration partners by our technology; business mix; revenues and growth in our partner base; market opportunities; competing technologies, industry conditions and trends; and regulatory developments. Actual results may differ materially from the anticipated results due to substantial risks and uncertainties related to the company and the biopharmaceutical industry in which the company operates.

Topics to Cover


- Cytovia iNK and NK cell engager platforms
- CYT-303 NK cell engager combination therapy options
- Rationale for CY-303 combination with checkpoint inhibition with Atezo + Bev in HCC
- CYT-303 reversal of NK cell dysfunction in HCC serial killing and immunosuppressive TME
- CYT-303 dose response in anti-tumor efficacy HCC tumor models
- CYT-303 pharmacokinetics in normal and tumor bearing mice
- CYT-303 in-vitro immunotoxicity and GLP toxicology
- CYT-303 clinical development plan


Two Platforms Engaging and Empowering NK Cells as Cancer Therapeutics Both Platforms are Applicable to other Immune Cells


First company combining NK cell engager bispecific antibody & gene-edited iPSC-derived NK cell platforms



Gene edited iPSC-Derived NK Cell Platform

Multiple Therapeutic Modality products

iNK Cell pre-complexed with Flex-NK™ Cell Engager or conventional combo

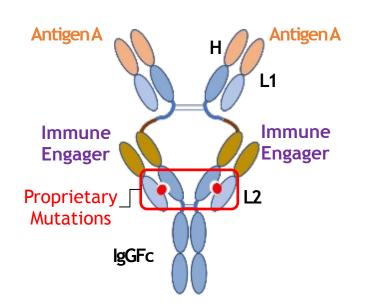
Edited universal iNK Cell

Current Therapeutic Indications

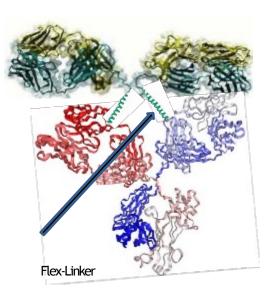
Hepatocellular Carcinoma (HCC)

Other Solid Tumors expressing GPC3

Glioblastoma Multiforme (GBM)

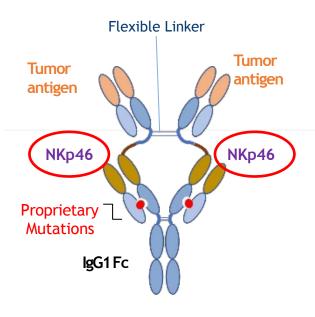

Multiple Myeloma (MM)

Cutaneous T-Cell Lymphoma (CTCL) & other CD38 expressing hematological tumors


Proprietary BsAb Technology Leading to Novel Multifunctional Flex Format

FlexTM Cell Engager multi-specific antibodies help redirect immune cells towards their target and further activate their killing activity at the tumor site

- Flexible linker allowing simultaneous binding to 2 different cells
- Full IgG with Fc allows for a half-life longer than other bispecifics supporting at least weekly administration
- Proprietary mutation ensuring proper alignment of light and heavy chains
- Tetravalent structure for increased affinity and avidity
- Up to 2 years stability
- IP acquired from Cytovia scientific cofounder
- Worldwide patent granted



Flex-linker facilitates binding to multiple antigens on different cells

A Differentiated Approach to Engage NK Cells - NKp46 is a preferred activating receptor to induce NK Cell-mediated anti-tumor immunity in solid tumors

Exclusive License from Hebrew University for NKp46 Antibodies

NKp46 has significant benefits as an Activating Receptor*

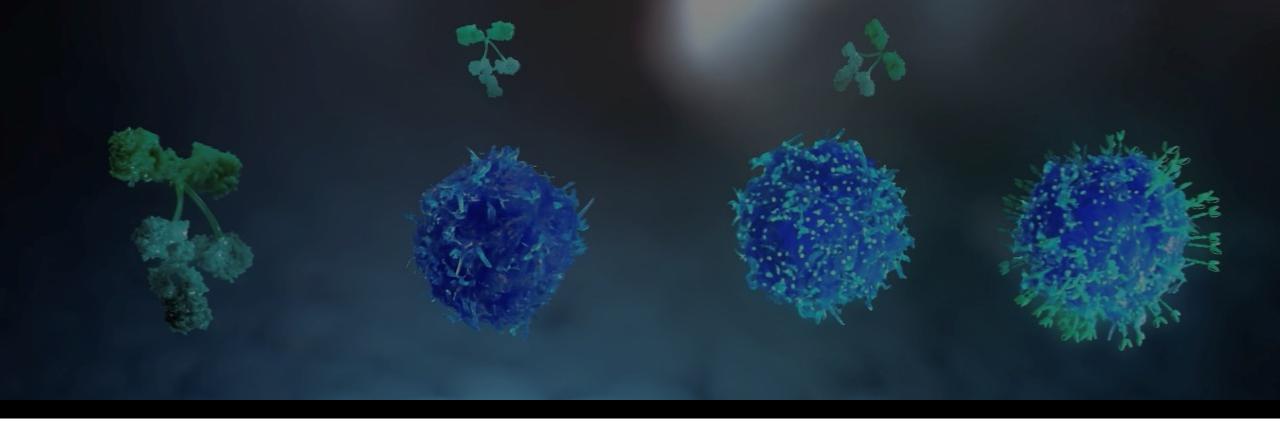
- Primary driver of NK Cell's "natural cytotoxicity"
- Foundational NCR1 identified as critical for formation of *NK cell immune*synapses with target cells
- Potent NK signaling via ITAM subunits
 CD3 zeta and Fc gamma to activate Zap
 70, Syk and PI3K kinases to mediate NK cytotoxicity and cytokine production
- NKp46 shows sustained expression on NK cells in the TME while other activating receptors, such as NKG2D, NKp30, CD16 and NKp44 are therein downregulated or shed in the TME

Prof. Ofer Mandelboim *Hebrew University, Jerusalem*

NKp46 Receptor-Mediated Interferongamma Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis

O. Mandelboim

Immunity Cell Press 2018


Cytovia Pipeline Supports 2 INDs in 2023 from its GPC3 and CD38 Franchises

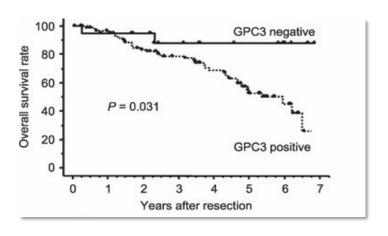
Product Platform	Product Candidates	Indication	Pre-Clinical	Clinical	IND Filings
Flex-NK™	CYT-303	НСС	GPC3 Flex-NK™ Bispecific Antibodies		2023
Bispecific Antibodies	CYT-103 (CytoLynx Program)	нсс	GPC3 Flex-NK™ Bispecific Antibodies Pre-Complexed with iNK Cells		China IIT in 2023
(monotherapy & combination with iNK cells)	CYT-338 +/- CYT150	MM, CTCL	CD38 Flex-NK™ Bispecific Antibodies		Monotherapy 2023
	CYT-303 + CYT-150	нсс	GPC3 Flex-NK [™] Bispecific Antibodies + Edited iNK Cells		IIT/IND 2024
	CYT-503	нсс	GPC3 CAR-iNK Cells		IIT/IND 2024
CAR-iNK Cells	CYT-538	ММ	CD38 CAR-iNK Cells		2025
	CYT-501	GBM	EGFR vIII + WT CAR-iNK Cells		2025

HCC: Hepatocellular Carcinoma MM: Multiple Myeloma

IND: Investigational New Drug CTCL: Cutaneous T-cell lymphoma IIT: Investigator-Initiated Trial GBM: Glioblastoma Multiforme

Glypican 3 (GPC3) HCC & Solid Tumors Franchise

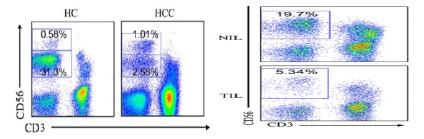
GPC3: A Promising New Therapeutic Target for HCC and Other Solid Tumors



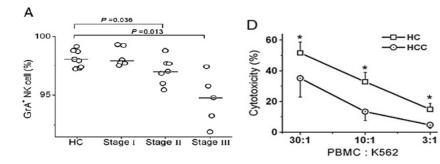
oncofetal antigen expressed on the cell membrane of HCC & other select solid tumors, while predominantly absent in normal tissue.

GPC3 Relative Expression in Solid Tumors

GPC3 Blood Levels Correlate with Severity of Disease

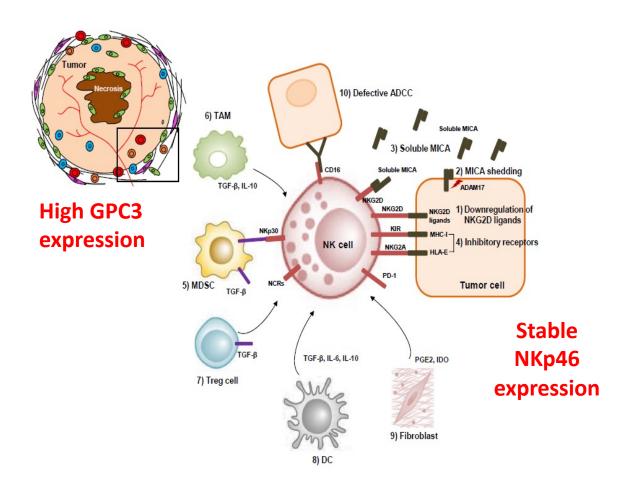


NK Cell Status in HCC



HCC Blood HCC Tumor Infiltrating NK cells NK cells

HCC NK Cytotoxicity

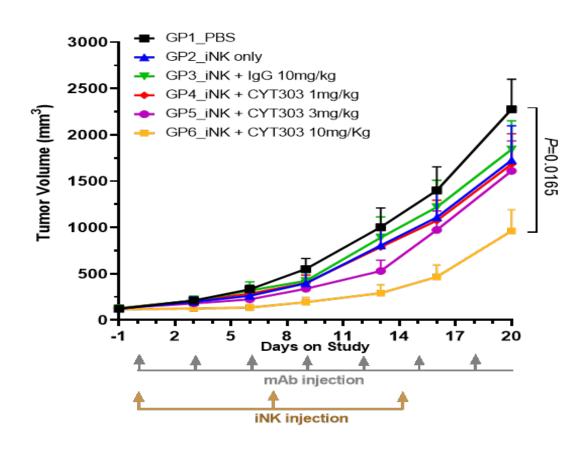


HCC Granzyme A

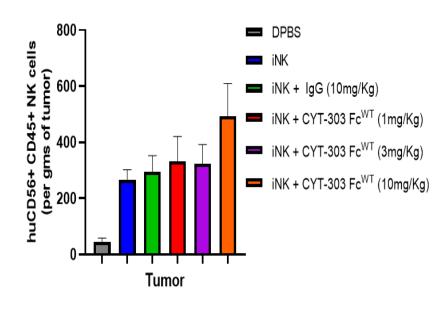
Cai L et al Clin Immunol 2008 Sung P et al Int J Mol Scien 2018

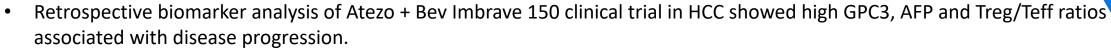
HCC NK cell dysfunction mechanisms

CYT-303 Bispecific Antibody Combination Therapy Options in HCC

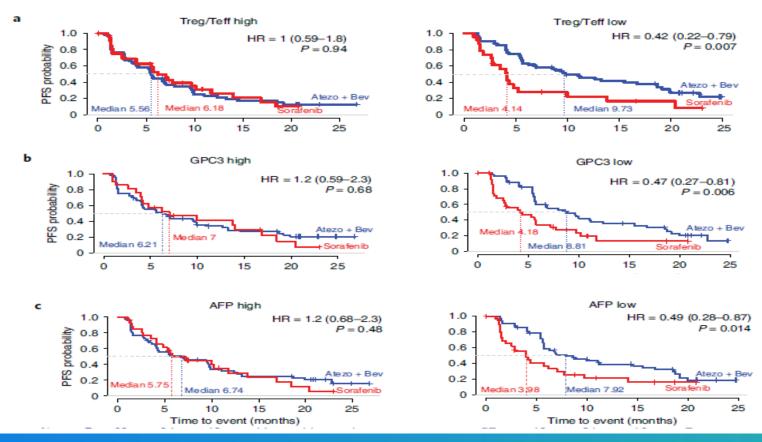

CYT-303 NK engager For HCC CYT-303 NK cell engager
combination with iNK CYT-100
or
CYT-303 NK cell engager
precomplexed with iNK CYT-100

CYT-303 NK cell engager combination with Atezo +Bev checkpoint inhibitor refractory patients (2nd line immunotherapy)

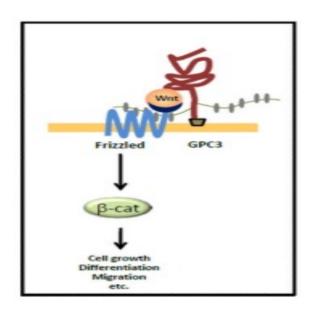

CYT-303 Antibody Combination with iNK Cells Demonstrates Dose-Dependent Anti-Tumor Efficacy in HCC Tumor Models


CYT-303 Tumor Growth Inhibition

PBNK Tumor Infiltration

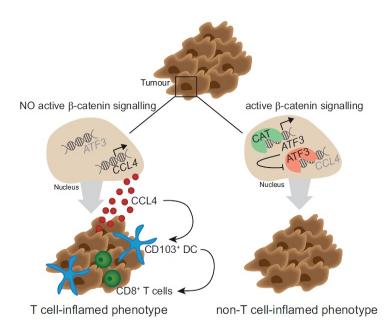


Rationale for CYT-303 Combination Therapy with Checkpoint Immunotherapy in HCC


Since CYT-303 can activate NK cells and reduce HCC tumor burden high GPC3 and AFP levels in HCC can be converted to low GPC3
and AFP signatures associated with response to Atezo + Bev checkpoint

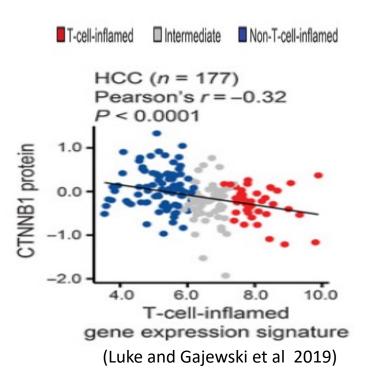
A Xu et al Nat Med 2022 and GO30140 and IMbrave150

GPC3-Mediated Wnt/beta Catenin Signaling is Pro-Tumorgenic and Excludes Immune Cells in HCC


GPC3 induces HCC proliferation via Wnt/beta Catenin pathway

(M Ho et al 2011)

 High tumor GPC3 levels are known to be associated with increased Wnt / beta catenin oncogenic signaling resulting in HCC tumor proliferation


Wnt/beta Catenin activation results in T cell exclusion in TME

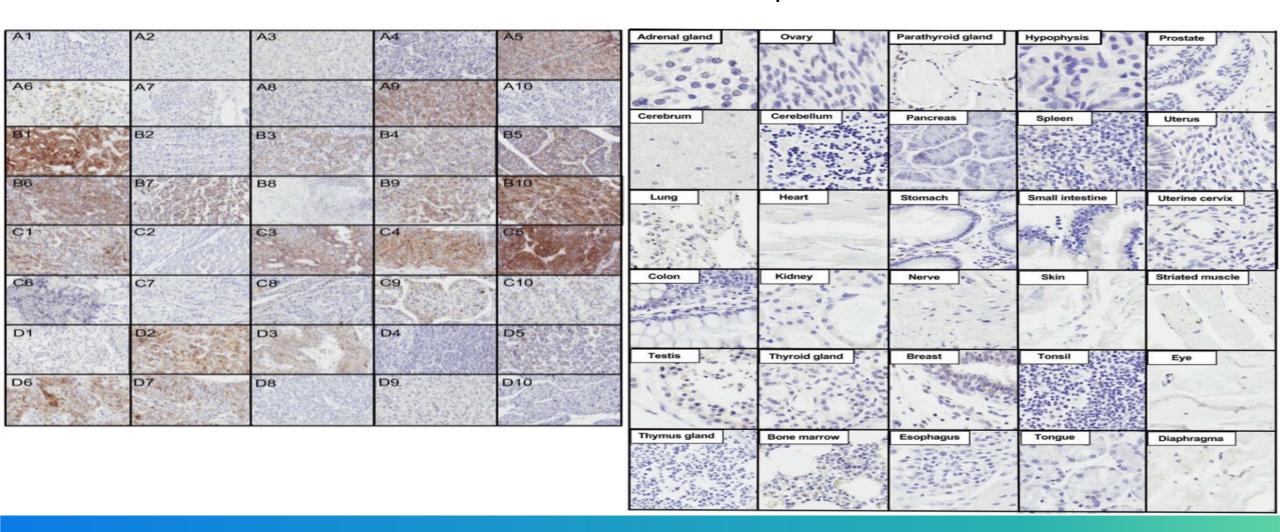
(Spranger and Gajewski et al 2015)

Wnt/beta catenin signaling activates ATF-3
transcription factor that <u>represses</u> chemokine
(CCL4) production and DC migration to tumor
resulting in T cell exclusion in TME

High beta Catenin associated with Non-inflamed T cells in HCC TME

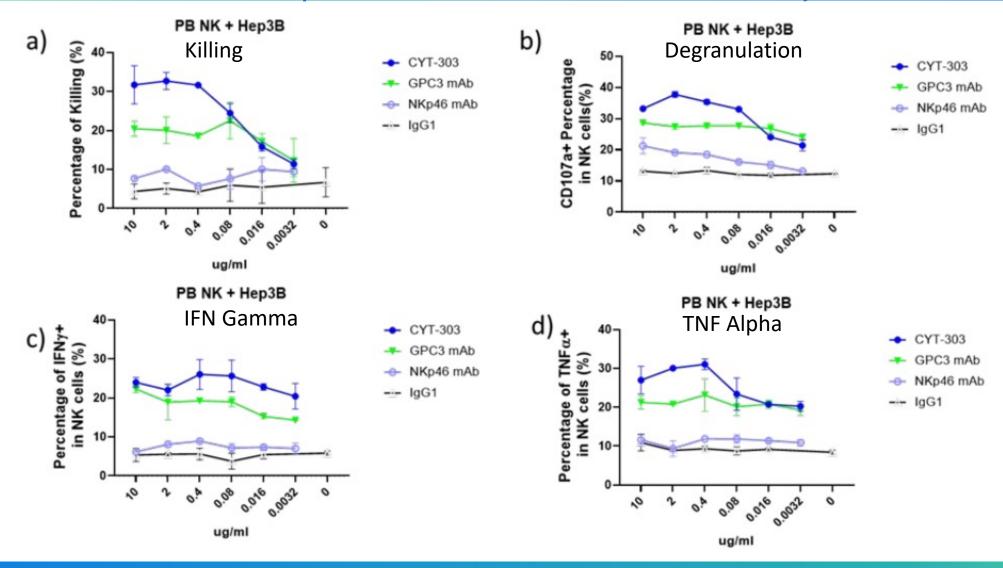
 Increased beta catenin levels show reduced T cell inflamed signatures in HCC and other solid tumors (TCGA data)

CYT-303 Shows Subnanomolar Binding to Human NKp46 and GPC3


Cross-reactivity against cynomolgus monkey for toxicology studies

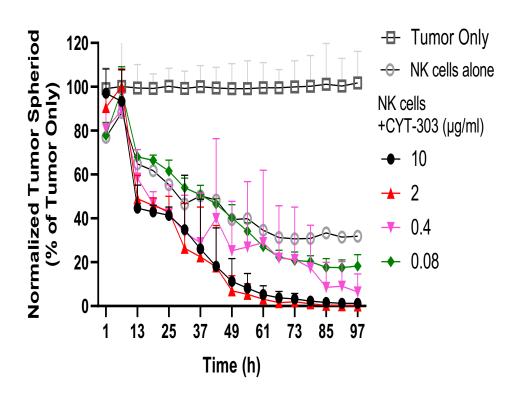
Target	Human Ligands (nM)	Cyno Ligands (nM)	Mouse Ligands (nM)
GPC3	K _D =0.646	K _D =0.273	K _D =0.447
NKP46	$K_D = 0.202$	$K_D = 2910$	KD= no binding
CD16	K _D =642 F K _D =147 V	K _D =140	K _D =4980

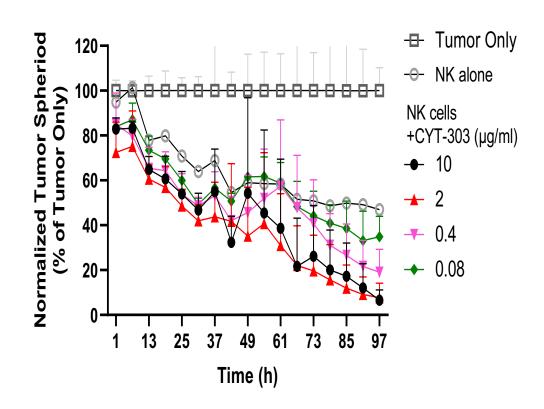
CYT-303 GPC3 Binder Does Not Show Any Significant Human Tissue Crossreactivity


GPC3 Expression in HCC Tumor Tissues

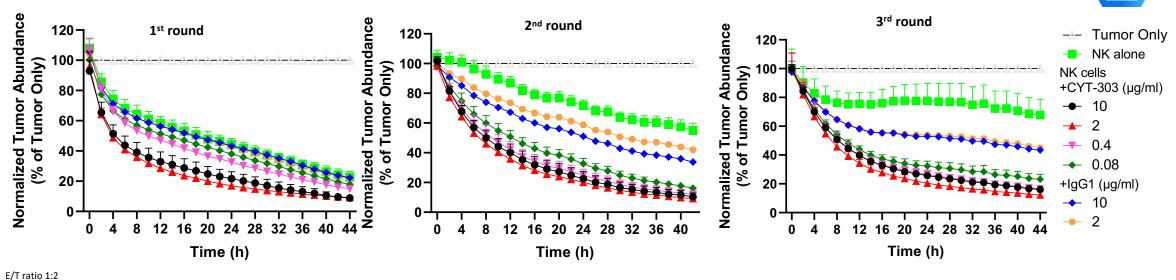
GPC3 Expression in Different Human Normal Tissues

CYT-303 Engager NK Cell Redirected HCC Killing is Superior to GPC3 Monoclonal Antibody



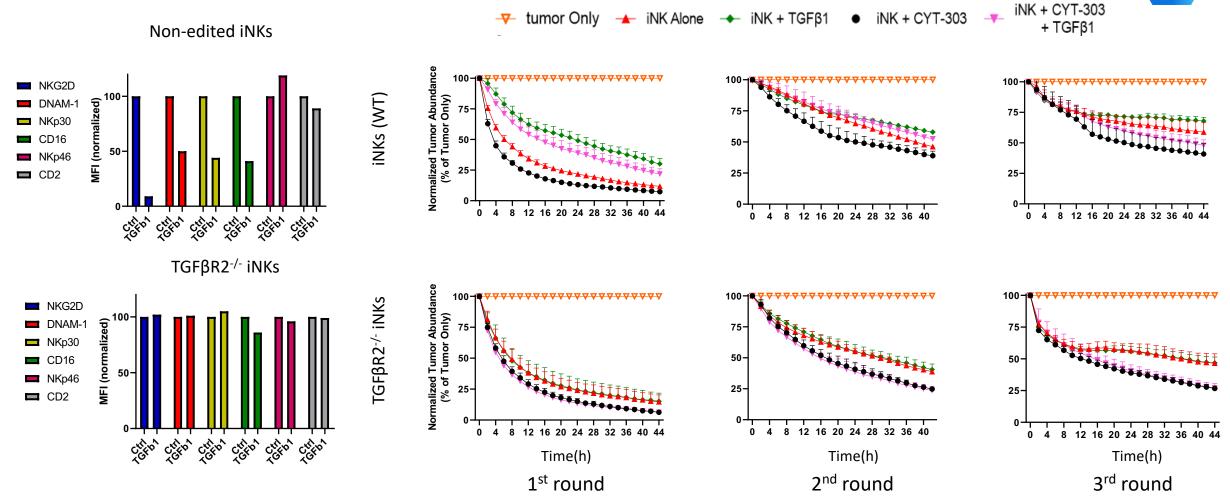

CYT-303 Enhances iNK and PBNK Cytolysis of HCC Tumor Spheroids

iNK CYT-100 killing

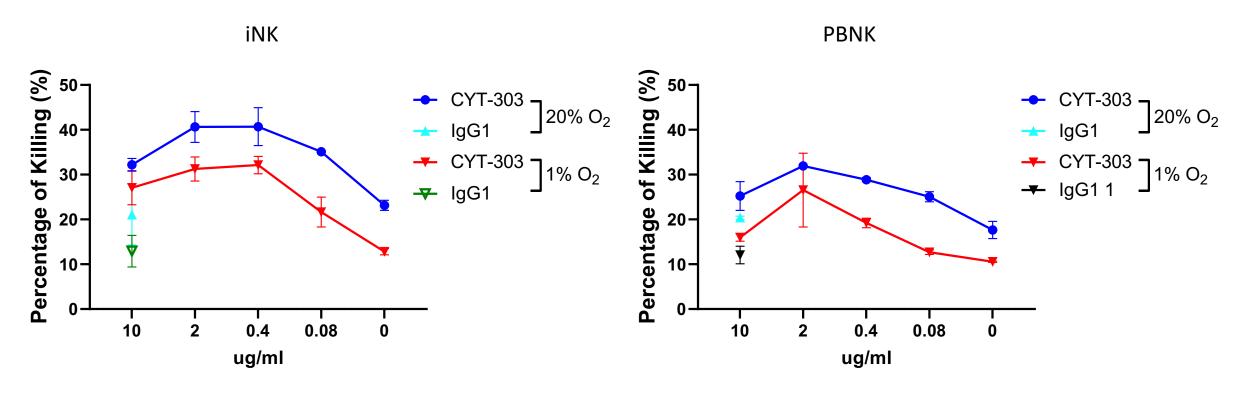


PBNK killing

CYT-303 Enhances HCC Tumor Killing & Reverses Dysfunction of PBNK Cells During Serial Killing

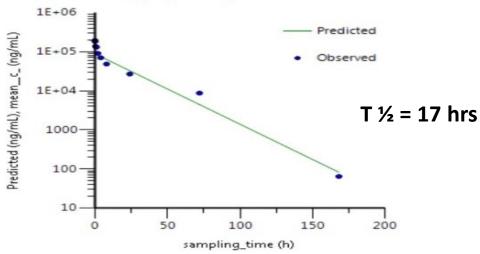


- → PBNK cells alone showed gradual reduction in serial killing of Hep3B tumors suggesting dysfunction of these cells over time
- → CYT-303 reversed dysfunction of PBNKs and enhanced serial killing of Hep3B tumors in a dose dependent manner


CYT-303 Enhances Killing & Reverses Dysfunction of iNK Cells During Serial Killing Even in the Presence of TGF β

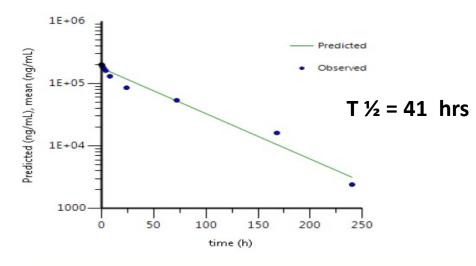
CYT-303 Reverses Hypoxia-Induced PBNK Dysfunction to Kill HCC Tumors

Innate Killer Summit March 30 , 2023


CYT-303 Pharmacokinetics in Mouse

→ In addition to FcRn binding antibody half life is dependent on amino acid sequences and % mannose content due to clearance by mannose receptors

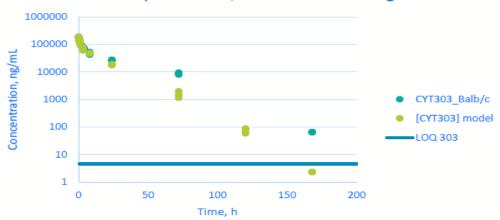
CYT-303 Flex NK engager


NCA – 2h-168h (6 points)

Parameter	Unit	Estimate_data 1
AUC(0-t)	ng*h/mL	2531406
AUC(0-inf)	ng*h/mL	2532968
DNAUC	h*kg*ng/mL/mg	253297
T1/2	h	17
MRT	h	28
CL	mL/h/kg	3.9
VSS	mL/kg	112

CYT-338 Flex NK engager

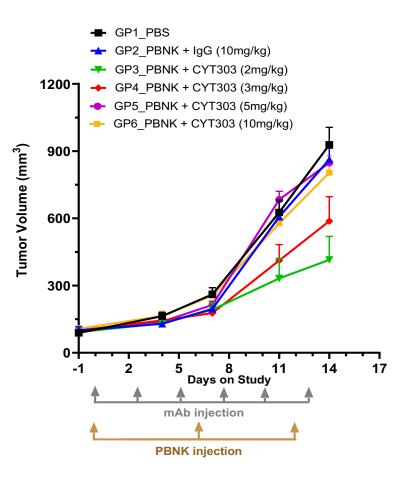
NCA: 0.08h-240h (10 points)


Parameter	Unit	Estimate
AUC(0-t)	ng*h/mL	10399858
AUC(0-inf)	ng*h/mL	10543701
DNAUC	h*kg*ng/mL/mg	1054370.1
T1/2	h	41.34
MRT	h	61.66
CL	mL/h/kg	0.95
VSS	mL/kg	58.48

Innate Killer Summit March 30 . 2023

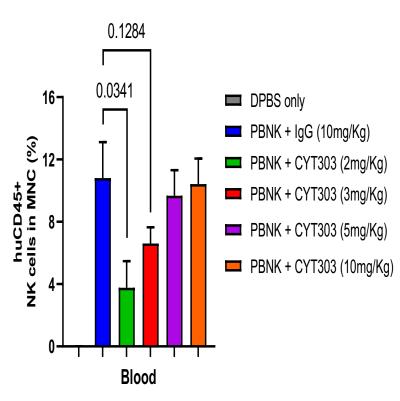
CYT-303 Single Dose PK in Normal and Tumor-Bearing Mice Showing Some Evidence of TMD

CYT303 PK profile balb/c and tumor-bearing mice


NCA an	alysis WNL	CYT303 estimate		
Parameter Unit		Balb/c	Tumor-bearing mice	
AUC(0-t)	ng*h/mL	2529406	1654265	
AUC(0-inf)	ng*h/mL	2529884	1654303	
DNAUC	h*kg*ng/mL/mg	252988	165430	
T1/2	h	14	11.4	
MRT	h	28	14.8	
CL	mL/h/kg	4.0	6.0	
vss	mL/kg	111	89.5	

Source: PK study report form Onco-design

CYT-303 Anti-HCC Tumor Dose Response Correlates with Increased PBNK Trafficking from Blood to the Tumor


CYT-303 Tumor Growth Inhibition

PBNK Tumor Infiltration

PBNK Pharmacodynamics in blood

Innate Killer Summit March 30 , 2023

CYT-303 Dose Response is Representative of Immune Synapse in PBNK Humanized HCC Tumor Model

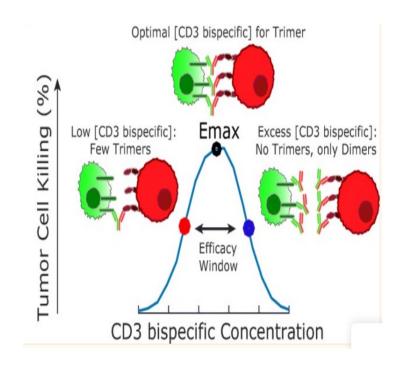
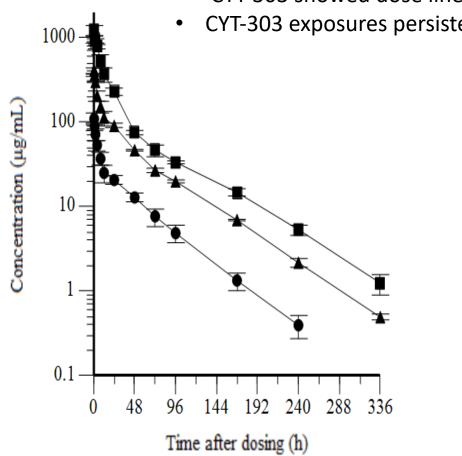


Illustration of MOA for bell shape activities for engagers

Source: Study report to be generated

CYT-303 Does Not Show Any Human Cytokine Release or Immunotoxicity In-Vitro



- CYT-303 showed no significant cytokine release in human PBMCs whilst the positive control TGN1412 super agonist anti-CD28 and anti-CD3 mAbs showed robust cytokine release
- CYT-303 did not show any NK cell fratricide whilst Anti-CD38 Daratumuab readily induced fratricide
- CYT-303 did not show any depletion of immune cell subsets including T. NK, B and monocytes while Daratumuab readily induced depletion of NK cells and monocytes

CYT-303 Pharmacokinetics in Cynomolgus Monkeys Supports Weekly Dosing in Clinical Trials

- CYT-303 was well tolerated and showed no evidence for any treatment related cytokine release
- CYT-303 showed dose liner pharmacokinetics parameters with a T ½ of 39-47 hrs

• CYT-303 exposures persisted for > 1 week supporting weekly dosing in clinical trials

Pharmacokinetic parameters of CYT-303 are shown in the following table.

Dose	C _{max}	AUC _{0-168h}	T _{max}	T _{1/2}	Vdss
(mg/kg)	(µg/mL)	$(\mu g {\cdot} h/mL)$	(h)	(h)	(mL/kg)
6	109 ±16.9	1910 ±286	0.500	39.0 ±1.48	136 ±13.5
20	408 ±26.9	7740 ±302	0.500	44.3 ±0.651	118 ±8.39
60	1240 ±175	19800 ±1530	0.500	47.6 ±3.11	115 ±20.6

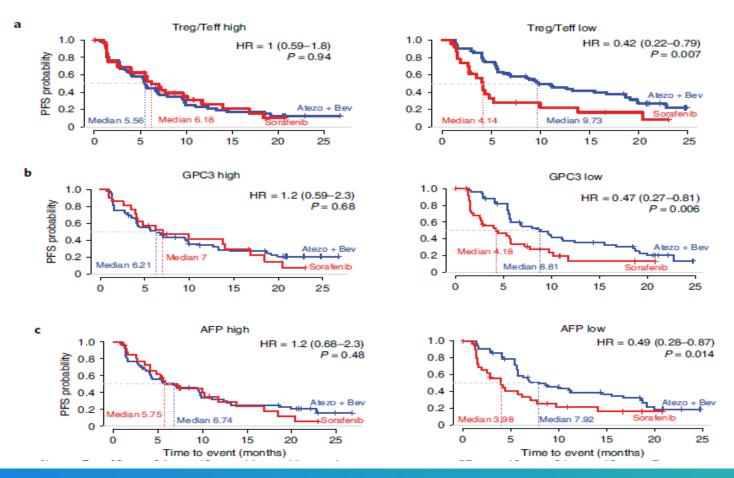
Data represent the mean ±SD of three animals.

4-Week Toxicity Study with CYT-303 in Cynomolgus Monkeys with a 6-Week Recovery following Once Weekly IV infusion (GLP)

Study objective: To evaluate the toxicity, safety pharmacology, PK and immunogenicity of CYT-303 following 4 weekly doses.

Group	Test and Control Articles	Dose Level (mg/kg)	Dose Volume (mL/kg)	Concentration (mg/mL)	Necropsy	Number o (Anima Males	
	Aiticles					iviales	i emales
1	Control*	_	5	_	Terminal	3	3
'	Control	- 5	3	3	Recovery	2	2
2	CYT-303	6	5	1.2	Terminal	3	3
3	CYT-303	20	5	4	Terminal	3	3
4	CYT-303	60	5	12	Terminal	3	3
4	C11-303	00	5	12	Recovery	2	2

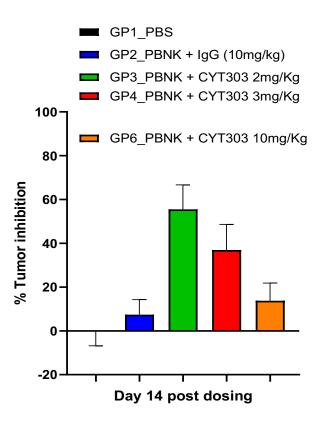
Results:

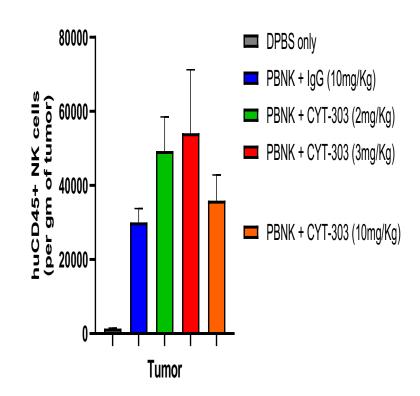

- Well tolerated and no treatment related toxicitys
- No evidence for cytokine release (based on cytokine measurements and clinical pathology assessments)
- CYT-303 dose dependent increases in Cmax and AUC's were observed following the first and last dose and no evidence for accumulation was observed. CYT-303 exposures were maintained throughout the 4- week duration of the study.
- ADA occurred in 1 /22 animals (6 mg/kg group) and as expected was associated with reduced CYT-303 levels in this animal.
- NOAEL in the study was the highest dose administered in the study = 60 mg/Kg.

Conclusion:

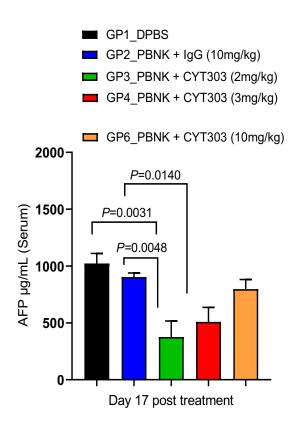
• The results from the tox studies together with efficacy in tumor models support a PAD (pharmacologically active dose) based approach for first in human dosing in clinical trials.

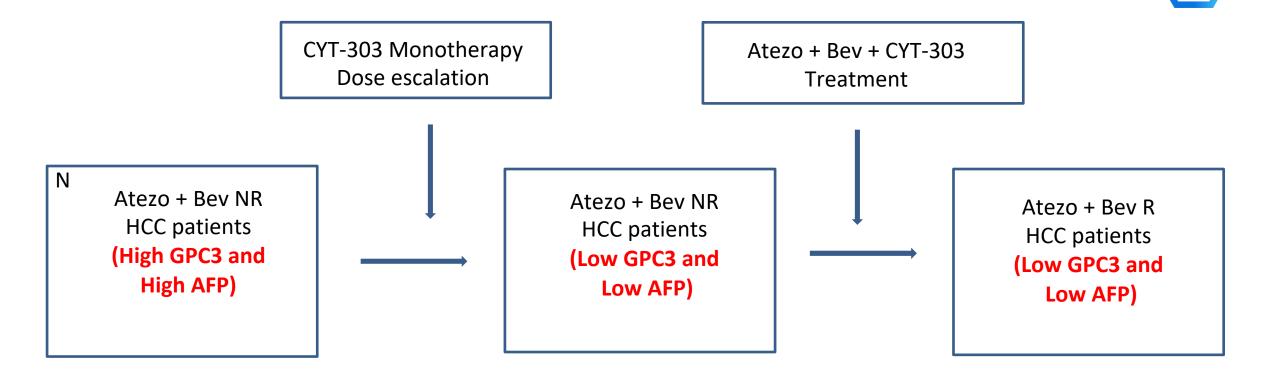
Rationale for CYT-303 Combination Therapy with Check Point Immunotherapy Retrospective Biomarker Analysis of Atezo + Bev First Line HCC Immunotherapy Approval


 Since CYT-303 can activate NK cells and reduce HCC tumor burden high GPC3 and AFP levels can be converted to low GPC3 and AFP signatures that are responsive to Atezo + Bev first line immunotherapy


A Xu et al Nat Med 2022 and GO30140 and IMbraye150

CYT-303 Activates NK Cells and Reduces HCC Tumor Burden and Blood AFP Levels: Converts Non Responder Atezo + Bev Signature Responder Atezo + Bev Signature


HCC Tumor growth Inhibition


PBNK activation and expansion in tumor

Blood biomarker AFP reductions

HCC Biomarker Based CYT-303 Monotherapy Primes Responses to Atezo + Bev Checkpoint Combination Second Line Immunotherapy in Advanced HCC

NR = non responder

R = responder

CYT-303 Progress Towards IND

Milestones	CYT-303
In vitro data	
In vivo data	
Process Development	
GLP Batch	
Pharmacokinetics	
FDA pre-IND Meeting	
GLP Toxicology	
GMP Manufacturing	2023
IND Submission	2023

GLP: Good Laboratory Practices

IND: Investigational New Drug Application

GMP: Good Manufacturing Practices

- ➤ GPC3 Flex-NKTM Cell Engagers Showed to Redirect NK Cells to Kill HCC Tumors Cells *in vitro* (data presented at AACR 2022)
- ➤ The Combination of CYT-303 and iNKs Showed Greater Tumor Growth Inhibition Compared to iNKs Alone in HCC mouse model (data presented at AACR 2022)
- CYT-303 Demonstrated Dose Dependent Anti-Tumor Efficacy in Combination with donor derived PBNK or iNK Cells in HCC Tumor Models (data presented at ESMO 2022)
- CYT-303 PK Data in Non Human Primates Supported Weekly Administration in Patients (data presented at SITC 2022)
- No toxicity of CYT-303 at up to 20 times expected therapeutic dose in 4-week repeat dose cynomolgus monkey study (data presented at SITC 2022)

Acknowledgements and Thank You

Liang Ling

Vishal Khairnar

Hao-Ming Chang

Harish Pottu

Solgalim Diaz

David Zou

Daniel Teper

Armin Rath

Wei Li

Ofer Mandelboim
Jean Kadouche